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Abstract

We introduce a method for proving the correctness of
transformations of programs in languages like Scheme
and ML. The method consists of giving the programs a
denotational semantics in an operationally-based term
model in which interaction is the basic observable, and
showing that the transformation is meaning-preserving.
This allows us to consider correctness for programs that
interact with their environment without terminating,
and also for transformations that change the internal
store behavior of the program. We illustrate the tech-
nique on one of the Meyer-Sieber examples, and we use
it to prove the correctness of assignment elimination for
Scheme. The latter is an important but subtle step for
Scheme compilers; we believe ours is the first proof of
its correctness.

1 Introduction

Compilers for higher-order languages typically perform
elaborate program transformations in order to improve
performance. Such transformations often change the
storage behavior of the program. For concreteness, let
us consider a simple language that, like Scheme, allo-
cates a new mutable cell for each parameter on each
procedure call. Then we should have an equivalence

((lambda (z) z) e) =e (1)

even though the left-hand program allocates one more
cell than the right-hand program. We should expect
a good compiler to perform this optimization, and we
would expect the semantics of the language to justify
it.
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Unfortunately, in the denotational semantics of Sche-
me, the equivalence above is unsound, because these
programs could be executed in a continuation that tests
the store in ways that are not expressible in Scheme it-
self. It is possible to construct denotational semantics
in which some equivalences like (1) are true, but they
are quite complex, and none extend far enough to en-
compass real languages [MS88, Ole85, OT95, Ode94].

We seek to prove the correctness of such source-level
transformations and translations in compilers for lan-
guages like Scheme and ML. This setting is challenging
in a number of respects:

e We seek methods that are applicable to both un-
typed and typed languages, including Scheme, ML,
and Idealized Algol, and also to translations from
one language to another.

e We seek methods that will be sound even for rea-
soning about programs like servers that do not ter-
minate.

e We seek methods that will be sound even for trans-
formations that change the behavior of a heap-
allocated store.

Our approach to such equivalences is to give the lan-
guage a denotational semantics in an event-based model.
An event-based model is a term model embedded in
a process calculus. Observable behavior is taken from
the process calculus; equality of terms in the model is
taken to be contextual equivalence as measured by this
observable behavior.

We illustrate the technique on one of the Meyer-
Sieber examples [MS88], and we use it to prove the
correctness of assignment elimination, an important op-
timization used in compilers for Scheme [KKsR*86].

We believe that this paper makes two contributions:
first, it formulates a framework that handles all the re-
quirements above. Second, it presents the first known
proof of correctness of assignment elimination.

Following a review of related work in Section 2, we
begin, in Section 3, by defining a metalanguage. This
metalanguage is an extended PCF with recursive types,
a store, and a CPS I/O system. The semantics of our



source languages will be specified by syntax-directed
translations into this metalanguage. The recursive types
in the metalanguage allow us to translate both typed
and untyped languages easily.

In Sections 3.2 and 3.3, we define the behavior of a
metalanguage term, and define two terms to be contez-
tually equivalent (denoted =y ) if they have the same
I/0 behavior when inserted into every possible program
context. By identifying input/output as the observable
actions of the system, we avoid considering the store as
part of the “final answer” of a computation. Indeed,
we avoid the notion of a “final answer” at all, so that
we can study equivalence of terms that have infinite
behavior [CG95, TW96].

Contextual equivalence is, by the form of its defini-
tion, a congruence — that is, it is preserved by all term
constructors of the language. Furthermore, it is easy
to show (using the confluence property for PCF), that
it M =, N, then M =yc N. Hence the structure
obtained by taking equivalence classes of open terms
under =y is a model of typed lambda-calculus. This
is our operationally-based term model. Because this is
a model, ordinary reasoning using (3-conversion is valid
in the model. This distinguishes it from treatments like
[MT91], in which only the weaker (3, rule is valid.

Unfortunately, the quantification over all contexts
makes 2y difficult to establish directly. We must con-
sider not only contexts in which the terms are executed,
but also contexts that pass the terms around, put many
copies of them in the store, etc. Our major tool for
easing this proof burden is a “context lemma” (Theo-
rem 4.2) stating that two terms are contextually equiva-
lent if and only if they are equivalent in a much smaller
set of contexts we call extensional contexts; for types
constructed with —, these are the same as head con-
texts.

We then turn to the specification of source languages.
We can specify a semantics in this model by giving a
compositional (syntax-directed) translation |[—]. from
a source language L to terms of the metalanguage; the
meaning of a source language expression is the Zyco-
equivalence class of the translated term. To show two
source language expressions e; and ez have the same
meaning, we must show that their translations are equal,
i.e., that [e1]z Zvo [e2] z To show a translation @ from
L to L' is correct, we equip L’ with a similar translation
[[_]]L’ and show that [[6]]5 Syo [[‘I>(e)]]£/ .

Our translations will produce terms in continuation-
passing style. This means that the translation will not
be fully abstract for stack-based languages like Ideal-
ized Algol. However, we are primarily concerned with
languages like Scheme and ML that already have con-
tinuations, and CPS translation is well-suited to these
languages.

Section 5 illustrates this technique using an example
from [MS8§].

In Section 6, we use the technique to prove the cor-
rectness of the assignment elimination transformation
for Scheme [KKsR786]. We conclude with considera-

tion of open problems and future work.

2 Related Work

Operationally-based term models were introduced in
[TW96]. Here we extend [TW96] by adding types and a
heap, and by considering applications to program trans-
formations. The formulation of input-output both here
and in [TW96] is based on Gordon’s CPS input-output
system [Gor94].

Observational or contextual equivalence for program-
ming languages was introduced by [Plo77], adapting the
work of Morris [Mor68] for the A-calculus. Plotkin’s for-
mulation, like almost all other work for sequential lan-
guages, dealt with conversion to a constant. Context
lemmas for proving contextual equivalence were intro-
duced by Milner [Mil77] in a typed functional language.
Gordon [Gor95] extended the result to include recursive
types with potentially infinite behavior.

The work most closely related to ours is that of Ma-
son and Talcott [MT91] and Felleisen [Fel87]. They
considered contextual equivalence for a number of un-
typed call-by-value languages using operational tech-
niques, and proved context lemmas for these languages.
Our approach differs from theirs in that we propose a
single metalanguage into which a variety of source lan-
guages can be translated; neither Mason and Talcott
nor Felleisen consider issues of translation. Our Con-
text Lemma (Theorem 4.2) also extends their results by
considering input-output effects rather than final an-
swers and by validating full 3-conversion rather than
their B-value.

Crole and Gordon [CG95] give a denotational se-
mantics for a typed call-by-value language with input-
output by translation into a metalogic M similar in
purpose, though not in structure, to our metalanguage.
Their translation uses a monadic style in place of our
continuation-passing style. Their treatment does not
include a store, and it is not clear whether their system
can be extended to deal with latently recursively typed
languages like Scheme.

Most work on store semantics [MS88, Ole85, OT95,
0Ode94] deals with stores in stack-discipline languages,
and are complicated by the need to model that restric-
tion. Most of this work depends crucially on the type
structure of the language; our work is applicable to un-
typed or latently typed languages as well. [PS93] treats
heap-allocated names without content or mutation.

Bisimulation was introduced by [Par81]. Abramsky
[Abr90] used bisimulation to define a A-model, but his
observables were very different from ours. The concept
of a relation preserved under computation is probably
much older. It was used for program equivalence in
[MT91, WO92, ORW95]; [Sta94] uses a similar notion
extended to become a logical relation.

Assignment elimination was introduced in the Orbit
compiler [KKsR*86] and used in [KH89, CH94]. It was
omitted from [GSR9I5] because the authors were unable
to prove its correctness [Ram96].



3 An Operationally-Based Term Model

3.1 Syntax

Values in the model are equivalence classes of terms in
an extended A-calculus that we call the metalanguage.

The types in the metalanguage, ranged over by 7,
are potentially infinite trees which respect the following
structure:

o = unit | bool | int | ref(T) | pr
T =0 | T—T | T+T | TXT

The base types o include int for integers, bool for
booleans, ref(7) for locations with contents of type T,
and unit for the singleton type. Type pr is for processes,
which may do I/O.

We allow infinite types, so we will need to define
operations on types coinductively instead of inductively.
We write 7 for the infinite type

unit + (7 X (unit + (7 X ...)))

of lists of elements of type 7.

The syntax of our metalanguage is given by the fol-
lowing grammar:

M:u=zx|n|c|l" | e:m.M | MM

with x ranging over a countably infinite set of variables
and [ ranging over a countably infinite set of location
constants. Locations [” are annotated with types and
are assigned type ref (7). The typing rules for the lan-
guage are standard. The meta-operation locs(M) re-
turns the set of locations occurring in M and is easily
defined via structural induction.

The metalanguage comes equipped with PCF-like
constants and the usual constants for sums and prod-
ucts. More interesting are the constants for stores and
processes, whose types are given in Figure 1. Their be-
havior is considered in Section 3.2.

In the remainder of this section, we turn this lan-
guage into a model of the lambda-calculus by defin-
ing the basic observable to be the input-output behav-
ior of a closed term of type pr. We then define two
terms to be equivalent (Zy¢) iff they have the same ob-
servable behavior in any closing context C[—] of type
pr. It follows immediately that =yc is a congruence
that respects 3-reduction, so the equivalence classes of
metalanguage terms under =y form a model of typed
lambda-calculus.

3.2 Operational Semantics and Observable
Equivalence

We define the operational semantics of the metalan-
guage in three steps. The reduction semantics of the
PCF fragment of the metalanguage defines a relation
—pef between closed well-typed terms. The reduction
relation — 4, is defined on states, includes PCF reduc-
tion within term components, and gives transition rules

for states with store operations in head position. Fi-

nally, we define a labeled transition relation, —;,, be-
tween states which reduce under —%,, to states headed
by I/O operations.

The definition of — . is the usual call-by-name re-
duction [Plo77] and is omitted. Figure 2 defines the
transition relation —;, between states. A state, de-
noted (M ; X)), is a term-store pair where M is a closed
term of type pr and store X is a finite map from loca-
tions to terms. All locations [” in the domain of ¥ must
map to closed terms of type 7.

The first rule of Figure 2 incorporates PCF reduc-
tion into — g ; if the term component of a state may
take a single PCF transition, the state pair may take the
corresponding transition. The new operator allocates a
new location in the store, initializes the fresh location
to its first argument, and invokes its second argument
with the new location. The deref operator invokes its
second argument with the value in the store at the lo-
cation given by its first argument. The update operator
destructively updates the location given by its first ar-
gument to be the term given by its second argument and
then invokes its third argument. The reflexive, transi-
tive closure of —, is denoted by —%,,.

A labeled transition system —%,, for the I/O opera-
tors is defined in Figure 3. The write operator writes its
integer argument and invokes its continuation. The read
operator reads an integer and invokes its continuation
with the number read. We make termination observable
by having a stop operator that takes a 1/ transition to a
stopped state {(stopped ; X'}, from which there are no
transitions.

Our notion of observable equivalence on states is
Rsim, the standard notion of (strong) bisimulation for
this labelled transition system.!

It is easy to show that consistent renaming of loca-
tions preserves observable equivalence. Two states are
equal up to a renaming of location constants, denoted
Qoc, if there is a relation © between locations satisfying
the following properties:

1. if (i,7) € ©® and (', j') € O, then (i =i’ & j = j')
2. MO =N
3. locs(M) C dom(O)
4. if (1,1") € © then either
(a) I & dom(Xy) and | € dom(Zy) or
(b)) Ty (1O =X n (") and locs(Z (1)) C dom(©)

Lemma 3.1
Qloc -

< .
— ~Ys1tm

PROOF SKETCH: Use coinduction on the definition of

~ .
~gim -

1Alt.ernat.ively, we could have made — g4, into a silent transition,
and used weak bisimulation. We believe the results would be the
same; the proofs would look somewhat different.



write :int—pr—pr,
read :(int—pr)—pr,
stop :pr, stopped :pr,

new”:7—(ref (T)—pr)—pr,

deref”:ref (7)— (17— pr)—pr,
update”:ref (1)—1—pr—opr,
eq?,,. :ref (7)—ref (1)— bool

write an integer to stdout
read integer from stdin
halt, halted

get fresh loc, initialize to 1st arg

dereference a location
update a location

compare locations for equality

Figure 1: Metalanguage Constants for Store and I/O Operations

M —pep M' = (M 5 Z)) =0 (M5 %)
{(new™ MN 5 S — 0 (NI7 5 S[I7 > M])
(deref™ I7M ; B)) — g0 (MN ; )

{update™ "M N ; Z) —g, (N ; Z[I7 — M])

it I7 & dom(X) U locs(rng(X), M, N)
itEZ(")=N
it I” € dom(X)

Figure 2: Operational Semantics for Store Operators

3.3 Term Equivalence

We say that two terms are contextually equivalent if
they have the same I/O behavior when inserted into

every possible program context:2

Definition 3.2 (contextual equivalence, 2y¢)
IfT'F M,N:t, then T' - M Zyeo N:7 iff for all closing
contexts C[—.] of type pr that respect T', and for all
stores X2,

(CIM] ; Z)) maim (CINT; )

Contextual equivalence is, by the form of its defini-
tion, a congruence — that is, it is preserved by all term
constructors of the language. Furthermore, it is easy
to show (using the confluence property for PCF), that
it M =, N, then M =Zyc N. Hence the structure

obtained by taking equivalence classes of open terms?
under 2y is a model of typed lambda-calculus. This
is the operationally-based term model we will use. Be-
cause this is a model, ordinary reasoning using -conver-
sion is valid in the model.

Definition 3.2 might seem unduly restrictive, because
it requires terms to behave identically not only in every
program context, but in every store. For terms that
contain no location constants, however, the store adds
no discriminative power:

Lemma 3.3 If I' v M,N:m, and M and N contain
no location constants, then ' = M Zyo N:7 iff for all

2'r‘(»zsp(»zcting I’ means that the context binds the free variables of
M with binders of the correct type.
3Actually, terms open with respect to an extended type assignment

I'* [Gun92, p. 55].

closing contexts C[—;] of type pr that respect T,
(CIM] ; 0) =sim (CINT; 0)

Proor SkeETCH: The forward direction is immediate.
For the reverse direction, given a context C' and store
Y, it easy to construct a context C’ that builds ¥ and
then executes M in context C.

Our plan is to specify the semantics of our source
language in this model by giving a compositional trans-
lation [—] from the source language to terms of the
metalanguage; the meaning of a source language ex-
pression is the =yc-equivalence class of the translated
term. To show two source language expressions e; and
e; have the same meaning, we must show that their
translations lie in the same equivalence class, i.e., that

[er] 2ve [e2].

4 Extensional Equivalence

The quantification over all contexts makes =2y difficult
to establish directly. We must consider not only con-
texts in which the terms are executed, but also contexts
that pass the terms around, put many copies of them
in the store, etc.

Our major tool for easing this proof burden is a “con-
text lemma” which states that two terms are contextu-
ally equivalent if and only if they are equivalent in a
smaller set of contexts we call extensional contexts.

Extensional contexts are motivated by the observa-
tion that for each type constructor (—, +, x), there is a
natural way of determining whether two terms of such a
type “behave the same way.” At a function type a—/,
two terms are extensionally equal if they take any term



(M ; B) =%, (writen M"; 57)

(M ; Z) =%, (read M"; 1)

(M=) B, (M)

(M ;) 2oy (M0 T

(M ; Z) =%, (stop; X))

(M ;X)) \—/n-o {(stopped ; ')

Figure 3: Semantics for I/O Operators

of type a to equivalent terms of type 3. For product
types, both projections should be equivalent, and for
sum types, the case operator should produce equivalent
terms. We can view these type-based contexts (appli-
cation, projection, and case) as type deconstructors, as
they decompose complex types into terms of their com-
ponent types. If our only complex types were function
types, then the extensional contexts would be exactly
the head contexts of Milner’s context lemma.

Figure 4 gives the grammar for extensional contexts.
Each extensional context T[—;]:0 is a context with a
single hole of type 7 that produces base type o.

We will say that two closed terms are extensionally
equivalent iff the terms have equivalent base-type be-
havior in every extensional context. Open terms will
be extensionally equivalent if all their substitution in-
stances are. Equivalence for closed terms at base types,
denoted 2, is defined simply: Equivalent terms of type
pr must be in &, for all stores 3. For base types other
than pr, terms must PCF-reduce to the same constant.
For base type ref (7) this means the same location con-
stant. We omit the formal definition in this abstract.
In the general case, the formal definition becomes:

Definition 4.1 (extensional equivalence, =..;)
IfTFM,N:T, then ' - M =,y N:7 iff for all closing
substitutions o which respect T', and for all extensional
contects T[—;]:0,

T[Mo] =, T[No]

This definition is similar to Gordon’s notion of equiv-
alence [Gor95]. His bisimilarity condition requires terms
to be equivalent in exactly our extensional contexts; our
base types correspond to his active types.

The main result of this section is that extensional
and contextual equivalence coincide:

Theorem 4.2 (context lemma)
'rM=, N7t T'FM>yc N1

PrROOF SKETCH: First, we show that when extension-
ally equivalent closed terms are substituted into a term
with a single free variable, the resulting terms are ex-
tensionally equivalent. This is the most complex por-
tion of the proof, as it involves the inductive definition
of substitution, the coinductive definition of ~;,,, and

the inductive definition of —¥, . It is then easy to show

that 2., is a congruence, and hence that =2.,; C Zyc.
The reverse inclusion follows by a standard argument

[Two6]. U

Extensional equivalence is not the same as using log-
ical relations; it imposes a lesser proof burden than
methods based on logical relations, and also extends
to untyped or recursively typed languages. Extensional
equivalence requires only that terms behave equivalently
in the same context. This contrasts with the logical-
relations approach, in which terms are required to be-
have equivalently in all equivalent contexts. This in turn
leads to non-monotonicity which is remedied only by re-
striction to finite types. That extensionally-equivalent
terms do behave equivalently in equivalent contexts fol-
lows from Theorem 4.2.

5 Meyer-Sieber Examples

We now leave the metalanguage and turn to applica-
tions. We begin by considering the examples from [MS88].
Our techniques suffice to do all these examples; we give
an illustrative one here.

Example 4 from [MS88] says:
The block below always diverges.
begin
new x; newy;
procedure Twice; beginy := 2 x contents(y) end;

x:=0; y:=0;
Q(Twice); % Q is declared elsewhere
if contents(z) = 0 then divergefi

end

In a language with I/O, the above block is not nec-
essarily equivalent to diverge, as the procedure Q might
do I/0. So we will undertake to prove the equivalence
of the following two blocks:

begin
new r; new y;
procedure Twice; beginy := 2 x contents(y) end;
x:=0; y:=0;
Q(Twice); % Q is declared elsewhere
if contents(z) = 0 then skip else diverge fi

end

and



Tl=olo  u=[]

Tl=ri—rlo == T[([=] M)]:0
Tlorxrlo 2= Tim[=To | T[Tk
T[=r4r,):0 :=Tlcase], ., [-]

base types
for all closed M:m;

M Ms):o for all v, My —y, Maimo—ry

Figure 4: Grammar for Extensional Contexts

begin
new r; new y;
procedure Twice; beginy := 2 x contents(y) end;

r:=0; y:=0;
Q(Twice); % Q is declared elsewhere
end

where skip does nothing.

Our general plan for proving the equivalence of two
source-program expressions, e; and eg, is to specify a
compositional translation [—] from the source language
i[[nt(ﬁ our metalanguage, and then to show that [e;] .

ea-

The semantics of this Algol fragment is given by
a straightforward CPS translation [App92, Plo75] into
our metalanguage, where all blocks get translated to
terms of type pr—pr. After some simplification, the
translation yields the following metalanguage term for
the left-hand side:

[ths] = (Ak:pr.new O (Az:ref (int). new 0 (Ay:ref (int).
Q Twice (derefz (A\vg. zero? vy k Qpr)))))

where Twice is defined as:
Twice & (A&":pr. derefy (Av,. updatey (* 2 v,) K'))

and where Q, is the canonical divergent term Y (Az:7.z).

The [lhs] term takes a run-time continuation x, al-
locates fresh locations for z and y initialized to 0, and
then continues with = and y bound to the fresh loca-
tions. The body of the block invokes the unknown func-
tion @) with the closure Twice as its argument and with
a continuation that checks if = is zero and continues
with k if so or diverges if not. The entire block has
type pr—opr.

The translation of the right-hand side, [rhs], is ex-
actly the same as the left-hand side, except that the
(derefx ...) continuation is replaced by simply x.

To prove that the two translations are operationally
equivalent, we appeal to the context lemma and set out
to prove that for all terms K of type pr—pr and all
stores X,

([ins] K5 TN msim ([rhs] K ; T

The left-hand side will take a number of steps to the
following state:

{(Q Twice (deref x (Av,. zero? v, K Q,,.))
Efly = 0,1, — 0]) (I, 1y fresh)

YRR

Similarly, the right-hand side goes to:

{(Q Twice K)[lo/,1y/y] ;
E[ls — 0,1, — 0]}

up to @ec.

We now construct a relation S, which includes the
two states above, and we prove that S is a bisimulation.

SE{ (M ;Shor, (M ;Shoy) |

7o (M, rng(S)) C {1, ,

o1 = [(derefl, (A\v,. zero? v, K Q,,))/z2],
02 = [K’/Zlv

S(1,) =0,

lo & locs(M,K,rng(2)) }

This simulation S characterizes the relevant aspects
of the example — namely that z’s location [, is never
updated (or, more exactly, that the only references to
I, are within a term of the form (derefl, ...)).

The pair of states in which we are interested is clearly
in S, with M = (Q Twice z). Because [, is allocated
fresh, we know that () and K contain no references to [,,.
The proof that S is a bisimulation is straightforward.

This example illustrates both the power of this tech-
nique to prove equivalences but also its limitations: our
translation does not validate the original equivalence
from [MS88]; hence the translation is not fully abstract.
Since, however, the languages that we are primarily in-
terested in, like Scheme and ML, do have input-output
behavior and do not obey stack discipline, the failure of
full abstraction for Idealized Algol is not so important
for our intended applications.

6 Assignment Elimination

For a more substantial example, we consider the prob-
lem of assignment elimination in Scheme. While Scheme
has a rich set of expressed values, its variables denote
only locations, because a Scheme program can always
mutate a variable by performing a set! on it. The se-
mantics of Scheme accomplishes this by automatically
allocating storage for each parameter at every procedure
call, and by automatlcally dereferencing each variable
reference [RCT86).

Many Scheme compilers perform a preliminary pass
called assignment elimination, in which Scheme is trans-
lated into an intermediate language in which the de-
noted values include expressed values as well, and in



e: (lambda (z

8

| n
set!
une

—x/\

p:

:|v e) | (letrec ((me

)] (ee...) expressions

..)e)

programs

where x ranges over identifiers and n ranges over integers.

Figure 5: A subset of Scheme

[n]sem = A&:Val—pr.iny n k
[z] sem = Ak: Val—pr.derefx &
[(lambda (21 ...

Zn) €)]sem = Ak: Val—pr.

ing (Av*: Val* AK': Val—pr.
new Vol (listref | v*) (A\zy:ref (Val). - - -
new V! (listref ,, v*) (Azn:ref (Val).[e]sem &) ... )) K

[[(60 €e1...
[e1] sem (Avy: Val

[[en]]scm()\vn.: Val.
outp f (Af':Val*
frvl, ...,

en)]]scm = k! Val_’pT'»[[eo]]scm()\fi Val.

—(Val—pr)—pr.

Un) K)) )

[(set! x €)]sem = Ak: Val—pr.[e]sem(Av: Val. update z v (k Qvar))

[(letrec ((z1 e1) ...

(n €n)) €)]sem = Ak: Val—pr.
new Qv (Azy:ref(Val). - - -

new Q yo; (Axy,:ref (Val).

[e1] sem (Avy: Val. update zq vy - - -
[en]sem (Avn: Val. update z, v, ([€]semk) - - )

[rune]sem = {Colle]sem] ; BN

Figure 6: CPS translation from Scheme subset to metalanguage

which allocation and dereferencing are explicit. Vari-
ables that are demonstrably never mutated are bound
directly to expressed values, and those that may be mu-
tated are bound to explicitly-allocated cells [KKsR*86].

Although this translation is generally considered un-
problematic, its correctness is difficult to prove, because
it radically changes the store behavior of the program.
Here we sketch the first known proof of correctness for
this transformation. We first describe the source and
target language of the transformation. We formulate
the translation, and then we sketch the proof itself.

6.1 Source Language Semantics

We will consider the subset of Scheme given by the
grammar in Figure 5. The language consists of expres-
sions e and programs p.

We specify the semantics of this Scheme subset by a
straightforward CPS translation (Figure 6). The main
difference from an ordinary denotational semantics is
that it does not introduce an environment; instead, it
leaves free variables in the source term as free variables
in the translation.

The type Val of expressed values is given as a recur-
sive sum:

Vol = N+ F expressed values
N =int integers
F = Val"—(Val—pr)—pr procedures

The denoted values are of type ref(Val). The transla-
tion of any expression is a term of type ( Val—pr)—pr,
given that all the free variables have type ref( Val).

For each summand S of the Val type, we use CPS in-
jection and extraction combinators, ing :S—( Val —>pr)
pr and outs : Val—(S—pr)—pr. We also use (-,
and listref ; for the evident list operations. All these can
be easily defined in the metalanguage.

The rule for an abstraction (lambda (z1...z,)e) in-
jects into the Val type a closure. When the closure is in-
voked, storage is allocated for each formal, the cells are
initialized, and the body is executed in an environment
in which the formals are bound to the new locations.

The rule for assignment, (set! ze), updates the loca-
tion bound to x with the value of [e]sem. The Scheme
semantics calls for the continuation to be invoked with
an undefined value, for which we use Qy;, the canonical
nonterminating term of type Val.



rhs

z|n|(lambda(z...)e) | (ee...)
(letrec ((z e). ..
(let ((x ths)...)e
(cell-ref z) | (cell-set! z e)
x | (make-celle)

) e)

Figure 7: Syntax of Scheme..j;

[2]cetr = Ak: Val—pr.k

[(lambda (21 ... 2p) )] cen = A& Val—pr.
ing (Av*: Val™ A" Val—pr.

IIe]] cell[(liStrefl ’U*)/xlv c

., (listref , v*) [x,] £') K

[(make-cell €)] cetr = Ar:ref (Val)—pr.[e] cen(Av: Val. new v k)

[(cell-ref )] cess = Ak: Val—pr.derefz K

[(cell-set! z e)]cenn = Ak: Val—pr.[€] ceu(Av: Val. updatex v (k 2)))

Figure 8: CPS translation from Scheme..; to metalanguage

The rule for recursive definitions follows the Scheme
semantics [RC*86]. It first allocates all required lo-
cations, initializing them to a dummy value, and then
updates all of the locations with their contents within a
scope that includes bindings from all mutually recursive
identifiers x1, ..., x, to their newly allocated locations.
Because Scheme allows arbitrary side-effects in the e;,
the usual definition with the Y operator is impossible.

Finally, evaluation of a program runs the expression
in a suitable initial context and an empty store. The
context Cy[—] contains a preamble that loads the values
of the primitives of Scheme into locations in the store,
binds identifiers to those locations, and then runs the
program in an initial continuation (probably something
like (A\v: Val. printy, v stop) for some suitable metalan-
guage term printy,;). Our definition is flexible enough
to accommodate the possibility of primitives that per-
form input-output or do non-local jumps, like call/cc.

This semantics easily verifies the equivalence (1) with
which we began this paper.

6.2 Scheme,.;

Figure 7 gives the syntax of the intermediate language
Scheme,q;;, which includes new cell operations and no
longer contains set!. Figure 8 gives the translation from
Scheme,¢;; into our metalanguage. Expressed values are
still of type Val; identifiers denote either values of type
Val or cells of type ref (Val). It is easy to deduce stati-
cally which variables are which; we omit the easy type-
checking system.

The rule for variables no longer automatically does
a dereference, and the rule for abstraction no longer
allocates storage automatically. Instead, cell allocation
and dereferencing are moved into the cell operations.
The rule for letrec is identical to that for [—]scm. The
rule for let does the evident thing and is omitted.

6.3 The Translation

Our goal is to translate our Scheme subset to Scheme ..,
using cells only for variables that are potentially mu-
tated. Figure 9 gives the translation. Bound variables
that do not appear on the left-hand side of a set! ex-
pression are translated as is, so no storage is allocated
for them; all other variables are translated by explicitly
allocating a location at binding time, and by explicitly
dereferencing when the variable is used. Variables that
are bound by a letrec are initialized by mutation, and
are therefore treated as cells.

6.4 Correctness of Assignment Elimination

Our goal is to show that assignment elimination is mean-
ing-preserving, that is:

Theorem 6.2 (Correctness of Assignment Elimi-
nation) For any Scheme expression e, and any T’ map-

ping the free variables of [e]sem and [AE(e)]cen to ref (Val),

It [[e]]scm gVC [[AE(@)]]CE”Z(VGZ—)]?T')—)]?T'

Proor:



Definition 6.1 (Assignment Elimination (AE)) Let sv(e) be the set of free variables of e that appear in e as
the left-hand side of a set! expression. Define AE(e) to be AE(D,e), where AE(V,e) is defined as follows. Here V
is the set of free variables that are to be bound to values rather than locations.

(cell-ref z) ifx gV

AE(V, (set! x €)) = (cell-set! v AE(V, €))
E(V,(eper ... e,))=(AE(V,eq) AE(V,eq) ...
AE(V,(lambda (z1 ... z,)€))

= (lambda (z1 ... z,) (let ((z1 71) ... (xp7n)) AE(V' €)))
(make-cell z;) if z; € svu(e)
where { { (

AB( ,I):{x fzxeV

b

AE(V,en))

x; if z; & sv(e)
V=V U{x; |z &svle)} —{z; | x; € sv(e)}
AE(V, (letrec ((z1 €1)...(zn en))e))
= (letrec ((z1 AE(V',e1)) ... (xn AE(V' €4)))
AE(V' e)) where V! =V — {x1,...,2,}

Figure 9: Assignment Elimination

1. We first need to check that
T+ [AE(e)]ceu:(Val—pr)—pr
This is straightforward.

2. Hence, by the Context Lemma (Theorem 4.2) and
the definition of .., it suffices to show that for
all closing substitutions ¢ mapping free variables
to closed terms of type ref(Val), all closed terms
K of type Val—pr, and all stores X,

((Telsemo) K5 X)) sim (([AE(e)]ceno) K ; X))

3. To show these states are bisimilar, we construct
a relation S4p between metalanguage states that
characterizes the syntactic differences between (non-
transformed) Scheme programs and those programs
after assignment elimination, as they reduce under

(09 . . .
—4o. This construction involves several stages.

4. As the original program and its AE-translated ver-
sion run, there are several different ways in which
corresponding subterms can differ:

(a) The translations of Scheme lambda expressions
will differ in the bodies of their closures. The
left-hand side closure body will contain new
operators for all local parameters, whereas the
right-hand side will only allocate storage for
mutable local parameters. On the left-hand
side, references to local variables will always
involve store lookup with the deref operator,
whereas on the right-hand side, references to
immutable variables will not do store lookup,
as the variable will get its value via substi-
tution. The macros £, and R, in Figure 10

capture the different translations of a Scheme
lambda expression. Note that the two equa-
tions at the top of the Figure 10 are not defi-
nitions; they are instead specifications for the
term macros £; and R;. The figure then gives
definitions for £ and R, that satisfy these
specifications. The same pattern is followed
in the remaining four blocks of Figure 10.

When subterms corresponding to lambda ex-
pressions are applied to a run-time continua-
tion, they are injected into the F' summand
of the Val type and sent to the continuation.
The macros L5 and Ro in Figure 10 express
the form of the two sides after they are applied
to run-time continuation terms.

When the closures are used at run-time (i.e.,
applied to arguments), they are extracted from
the Val type and applied to their application-
time argument list and continuation. At this
point, the differences between the closure bod-
ies are “exposed”, and we see different storage
behavior. This stage of execution is expressed
by the macros £3 and R3 in Figure 10.

As the exposed bodies of corresponding clo-
sures reduce, the left-hand side allocates stor-
age for all local variables, whereas the right-
hand side only allocates storage for mutable
local variables. For immutable local variables,
on the left-hand side we have a substitution
[l;/z;] for each z; immutable variable (and
mutable too, for that matter). On the right-
hand side, for the immutable variables z;, we
see value substitutions, [(listref; v*)/x;], where
the variable v* contains the list of incoming
arguments. We express this relation by first



Initial Translation:

Ll <JJ1 e def

(M&:Val—pr. inp(Av*: Val* A&': Val—pr.
new Vel (listref , v*) (Axy:ref (Val). - -
new Vo (listref ,, v*) (A :ref (Val).

(Pr)...)) k)

[AE(V,(lambda (z1 ...2m) €))]cen =
Ri(V,CMTAE(V',€)] cen ], with
Vi=VUu{e |z &svie) —{z; | x; € sv(e)}
C={z; |z € sv(e)}

Rau(V,0)[P] &

(Ak: Val—pr. inp(Av*: Val* \&': Val—pr.

new Vo (listref , v*)
(Az;:ref (Val).

((P [(listref ;v*)/wile;ev) &) - -

for each z; € C

)) %)

Applied to a continuation K:

((Lof@y.cam)[PIK) ;D) =7
(K Lolwr . ) [P]) 5 5
Lolzr ... zm)[P]
inr(Av*: Val™ k' Val—pr.
new Vel (listref , v*) (Axy:ref (Val). - -
new Vol (listref ,, v*) (A :ref (Val).
(PK')...))

((R(V,O)NP] K) ; Z) —5y
(e Ra(V. C)EPY) : )
Ra(V, O)[P] &
inr(Av*: Val* Ak’ Val—pr.
new Vo (listref . v*)
(Az;:ref (Val).
((P [(listref ; v*) [ Tila;ev)

for each z; € C

K)...))

Closure Applied to an Argument List Q:

{outp(La(zy ... 2m)[P]) (\f:Val* —(Val—pr)—pr.
fQK); )
where Q:Val™ and K:Val—pr
—per (Lalar .. xm)[P Q K] ; T)

£3<JJ1 l'm>|IP1 P2 P3]] déf

new Vo (listref | Py) (Axy:ref (Val). - - -
new Ve (listref . Ps) (Ax,,:ref (Val).
(P P5)...)))

{(outp (Ra(V, CYPT) (Af: Val”—=(Val—pr)—pr.
fQK);X)
where Q: Val™ and K:Val—pr
=5 (Rs(V,O)[P Q K] ; T

Rs(V,C)[P, P, P3] &

") | foreach o €
((Py [(listref ; Py)/%]eiev) Ps) ...

Figure 10: Definitions of £;, R; macros

. . AE
constructing a relation ~~y between terms
that captures the differences between transla-
tions of immutable variable references. This
is done in Figure 11. The subscript V is a list
of variables which are treated as values on the
right-hand side. We then construct a relation

%V‘Z between metalanguage terms, defined

in Figure 12, that characterizes the differences
between terms which were originally related

by i‘fv but which have been subjected to run-
time substitutions — of locations for variables
on the left-hand side and of values for vari-
ables on the right-hand side. We then extend

AE . .
~>y|z to act on stores pointwise.
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5. It is easy to show that if V' = {xy,..
Dlx;:ref (Val)]?_, F M:T and

., Zn} and

Dlx;:ref (Val)]iey = M Ly Nt

then I'[z;: Val]’~; F N:7, and that if T[z:7'] - M 2Ly
Nirand T - P 5, P’ and ¢ V, then
T+ M[P/z] “5y NP /a]:r.

. Figure 13 defines the candidate relation, Sspg, by
abstracting over corresponding pairs of terms which
differ as outlined earlier. Each of the distinct ways
in which corresponding metalanguage subterms might
differ is handled by a substitution pair (¢}, 0%).
Each substitution has a domain uj, ..., u,,,, which

mark the locations of the corresponding subterms

that differ as described in step 4(a)-(c) above.



AE .
Lk n~y niint (CONG-INT)

AE
T'ke~yer

(7 from Figure 1)

(CONG-CONST)

rrim 4%, [":ref (1) (CONG-LOC)

Clz:r|F M Ly Nr 2 gV

L+ (Ax:r'. M) 2Ly Azt .N):m'—71

(CONG-ABS)

Fl—Mﬁlgv M7 —7 FI—NiE)V N":7!

TF(MN)2E, (M N'Yr

(CONG-APP)

xgV T(x)y=r

AL
I'Fao~yar

Fl—M‘i‘/gVN:Val—mr z eV T(x)=ref(Val)

(MUTABLE-VAR)

T+ (derefz M) 25y (N x):pr

(IMMUTABLE-VAR)

Figure 11: Definition of ‘i‘fv

The last section of the definition of S, g requires

all of the closure bodies to be ’i?wz—related. In
order to simplify the notation, we assume that all
of the bound variables in the states we consider
are distinct. This allows us to have a single i‘ng
relation for the whole simulation relation, rather
than different V’s and Z’s for different closures.

. For any Scheme expression e, any metalanguage
context C[—(yal—pr)—pr]:pr, and any store X,

(Cllelsem] s Z) Sar (CIAE(e)]cen] ; TN

To establish this, let the Z in the f‘/gv‘z rela-
tion be () (the empty sequence), let the o2 and

o3 substitutions both be empty, let the o' substi-
tutions have elements for the translation of each

lambda expression in e, and let the V in QEV con-
tain the immutable local variables of the lambda-
expressions in e. The proof uses the results of
step 5 to deal with binding and substitution.

By choosing C' appropriately, this implies that all
the states in step 2 above will be in S4p, as de-
sired.

. We must verify that S 4 g is a bisimulation relation,
using the definition of a bisimulation. This in turn
requires an induction on the number of steps to an
input-output operation, which is done using a case
analysis on the form of My and Ny; the interesting
cases are when these terms have one of the u} as
a head variable. The most delicate step is to con-
firm that subterms of reference type reduce to the
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same location constant when they are in ‘i?V‘Z: If
M “%y; N, M,N:ref(7), and (M, N) ¢ Z, then

The proof is by induction on the length of the re-
duction.

9. Thus S4g is a bisimulation relation that contains
each of the required pairs of terms, and we are
done.

7 Open Problems and Future Work

We believe that these techniques are powerful enough
to treat other important optimizations, such as lambda-
lifting in Scheme. We would like to consider more such
transformations. In particular, we would like to con-
sider the interaction between these techniques and those
relying on flow analysis to collect global data about the
program.

It is clear that the semantics of Idealized Algol in
Section 5 is not fully abstract, because our contexts in-
clude procedures with input-output and non-local jumps.
On the other hand, full abstraction for our Scheme sub-
set is not a well-formulated question, since the initial
context Cy is unspecified. Our Scheme semantics is as
abstract as possible, in that for any Scheme expressions
e1 and eq, if [e1]sem ZEve [e2]sem, there is some choice
of Cy that distinguishes them. This remains a matter
for further investigation.



Definition 6.3 (éng for metalanguage terms) For V = (z1,...,z,), Z = {1, P1),...,(lx, Pr)),
DMy, Nre
ANk<n
AT (x;) =ref(Val), forl1<i<mn
A Pi:Val, for1<i<k
AdAM', N' s.t.
ANM = M’[ll/xl,...,lk/xk]
AN = N’[Pl/l'l,...,Pk/ZL‘k]
ATFM A5, Nr
.pe AE
Definition 6.4 (~~'y|; for stores)
NS VARRC VIS Hv =t
A dom(X,) = dom(Zw)
AYTIT € dom(Sh,) . T H54,(0) %5y 7 Sy(l):r
Figure 12: The Relations f‘ng between Terms and between Stores
Sap™ {({(Mo s Sar)oc, (Nos nor) |
or = ol u U%U (T%
JR:aRUJRUU%1 ) R , ; ;
fo(M,rng(X)) C {ug, ..., up ,uf, .. up uf, ..,
0% = [U,% = ‘Cl(Xll)[[Mll]]v v 7u1111 = ‘Cl(Xil)[[M%q]”
L1, R
(LR 8 o = fud = Ra(V, CHINTL - uh, = Ra(Vi O3 INA]
ny = #op = #op
07 = [uf = Lo(XT)[MT], ... up, = Lo(XZ,)[ME]]
L2, R
(Lo R2) 8 o2 = o Ro(V2, GOV 2, v R (V2 C2,)INE,]]
ny = #o% = #o%
’ ‘7% = [U? = 53(X13)[[M13,1 M13,2 M13’3]], . vuig = 53(X33)[[M23,1 Mgg,,z M33,3]]]
, R
(CoR) 3 o = v Ro(V, CHINEy N Nl -, v RV, O )INE, N2, 5 N2, ]

ng = #o% = #o%

SIS

E'V:<l‘17...7l‘n>/\

iz = <(117P1)7"’7(lk7Pk4)>7k <ns.t.
for each(M, N) € {(M},N5)} U {(Mo, No)},
AT MAE, , Nor
/\EM:E%X[E[‘hHPL,lkHPJQ]
/\F"E,A/[ WV\Z EN
ATHP S, P1<i<k

2

Figure 13: Definition of Syp

12



Our formalism should make it relatively easy to ex-
tend our input-output primitives to model communi-
cating programs; how this will change the theoretical
results remains to be seen.

8 Conclusions

We have given a denotational semantics for programs
with input-output and a heap-allocated store. Because
the framework is denotational, it encompasses a variety
of source languages, and we need not reprove complex
technical results like the Context Lemma each time we
change the source language. Because equivalence in the
model is based on input-output behavior, we can clas-
sify the behavior even of programs that do not termi-
nate. (Space precludes an example here, see [TW96]).
Similarly, formulating equivalence in terms of observ-
able input-output behavior sidesteps most of the prob-
lems associated with store semantics.

Because equivalence in the meta-language is based
on input-output behavior, proofs of equivalence ulti-
mately rely on bisimulation arguments. In our expe-
rience, these arguments are intuitively satisfying, since
they formalize the notion that the two programs being
considered “stay in sync” as they compute. This ap-
proach imposes a lesser proof burden than do methods
based on logical relations, and also extends to untyped
or recursively typed languages.

We have used the technique to obtain a new result:
the correctness of assignment elimination in Scheme.
We believe that our methods will extend to a variety of
transformations used in Scheme and ML compilers.
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