
Automated Verification of Model-based Programs
Under Uncertainty

Tazeen Mahtab, Gregory T. Sullivan, Brian C. Williams
Massachusetts Institute of Technology

Computer Science and Artificial Intelligence Laboratory
tmahtab@mit.edu, gregs@csail.mit.edu, williams@mit.edu

Abstract— Highly robust embedded systems have been enabled
through software executives that have the ability to reason about
their environment. Those that employ the model-based autonomy
paradigm automatically diagnose and plan future actions, based
on models of themselves and their environment. This includes
autonomous systems that must operate in harsh and dynamic
environments, like deep space. Such systems must be robust to
a large space of possible failure scenarios. This large state space
poses difficulties for traditional scenario-based testing, leading to
a need for new approaches to verification and validation.

We propose a novel verification approach that generates an
analysis of the most likely failure scenarios for a model-based
program. By finding only the most likely failures, we increase the
relevance and reduce the quantity of information the developer
must examine. First, we provide the ability to verify a stochastic
system that encodes both off-nominal and nominal scenarios. We
incorporate uncertainty into the verification process by acknowl-
edging that all such programs may fail, but in different ways, with
different likelihoods. The verification process is one of finding
the most likely executions that fail the specification. Second, we
provide a capability for verifying executable specifications that
are fault-aware. We generalize offline plant model verification
to the verification of model-based programs, which consist of
both a plant model that captures the physical plant’s nominal
and off-nominal states and a control program that specifies its
desired behavior. Third, we verify these specifications through
execution of the RMPL executive itself. We therefore circumvent
the difficulty of formalizing the behavior of complex software
executives.

We present the RMPLVerifier, a tool for verification of model-
based programs written in the Reactive Model-based Program-
ming Language (RMPL) for the Titan execution kernel. Using
greedy forward-directed search, this tool finds as counterexam-
ples to the program’s goal specification the most likely executions
that do not achieve the goal within a given time bound.

I. INTRODUCTION

Highly robust embedded systems have been enabled through
software executives that have the ability to reason about their
environment. Such systems must operate in harsh and dynamic
environments, like deep space, and therefore must be robust to
a wide combination of potential failures. Those that employ
the model-based autonomy paradigm automatically diagnose
and plan future actions, based on models of themselves and
their environment. Model-based programming is an approach
to developing embedded systems that can reason about and
control their hardware using corresponding software models
[WICE03]. A model-based program enables one to specify the

desired state evolutions of the embedded system. It consists of
a specification of behavior, known as a control program, and a
representation of the physical plant’s nominal and off-nominal
states, known as a plant model; these are run on a model-based
executive. Model-based systems have the ability to detect
and respond to unanticipated failures on the fly. Therefore,
they provide an increased assurance of reliability and fault
awareness. However, such programs present a new challenge
to verification. First, the large space of failure situations they
handle poses difficulties for traditional scenario-based testing.
Second, they are run on a complex execution algorithm. This
leads to a need for new kinds of verification and validation
[PS00].

Traditional verification efforts, such as the symbolic model
checking of reactive programs [BCM

�

92], have focused on
determining the correctness of embedded programs. However,
in the real world, where embedded programs control real
hardware, those systems are never guaranteed to succeed; they
are more or less likely to succeed. We extend model-based
system verification to the verification of model-based programs
under uncertainty.

We propose a novel verification approach that generates an
analysis of the most likely failure scenarios for a model-
based program. First, we provide the ability to verify a
stochastic system that encodes both off-nominal and nominal
scenarios. We incorporate uncertainty into the verification
process by acknowledging that all such programs may fail,
but in different ways, with different likelihoods. Second, by
verifying model-based programs, we provide a capability for
verifying executable specifications that are fault-aware. A
model-based system is never guaranteed to function correctly,
since it always has some probability of not behaving nomi-
nally. Therefore, verification of these systems is a process of
finding the most likely of these failure executions, rather than
simply determining if there are any. Third, we verify these
specifications through execution. We therefore circumvent the
difficulty of formalizing the behavior of complex software
executives by invoking the actual executive components.

We present the RMPLVerifier, a tool for verification of model-
based programs written in RMPL for the Titan execution
kernel. The Reactive Model-based Programming Language
(RMPL) allows developers to perform high-level reasoning

on the behavior of a model. The RMPLVerifier uses greedy
forward-directed search to analyze an RMPL model-based
program based on a goal specification and a given time
bound. It then presents, as counterexamples, the most likely
executions that lead to failure i.e. non-achievement of the
stated goal. We analyze the results of applying our verification
approach to the Mars Entry scenario, a significant model-based
program specifying the entry sequence for a lander spacecraft.

II. MOTIVATION

Our verification approach provides three capabilities. We ex-
amine and motivate each of these in turn.

The first contribution of our approach is the ability to verify a
stochastic system that encodes both off-nominal and nominal
scenarios. In the past, one created robust embedded systems
by attempting to enumerate ahead of time all possible failures
the system could encounter. These systems were limited by
the ability of the software development team. If a system
encountered a failure that had not been predetermined by the
developers, possible because of the many complex interactions
between the hardware and software and the environment, it
could fail to react properly. For example, the failure of the
Mars Polar Lander is thought to have occurred because of
unexpected leg sensor readings as it attempted to land. The
software erroneously concluded from these readings that the
Lander had touched down on the surface and prematurely shut
off the engines, leading to the loss of the craft. New intelligent
systems have been created to address this problem [WICE03].
Rather than being preprogrammed with all failures, these
systems have the ability to deduce if they are in a nominal
or failure state and to respond accordingly. These systems are
stochastic, as they maintain knowledge of the probability of
being in a particular state at a given time. We provide a veri-
fication capability for such systems. By returning information
on the likelihood of the program’s executions, we incorporate
uncertainty into the verification process. By showing only the
most likely failure executions, the RMPLVerifier helps focus
the systems engineer on the most vulnerable components of a
system.

Our second contribution is the ability to verify executable
specifications that are fault-aware. Synchronous programming
languages, such as Esterel [BG92], were designed for writing
software to control reactive systems. A synchronous program-
ming language is characterized by logical concurrency, or-
thogonal preemption, multiform time, and determinacy, which
have been shown to be necessary characteristics for reactive
programming [BG92]. Synchronous programming seeks to
provide executable specifications. An executable specification
is a program that doubles as a specification about which one
can prove properties and an executable implementation of
that specification. This eliminates the need to write a spec-
ification and implementation separately [WICE03]. Model-
based programming generalizes this approach to executable
specifications that are fault-aware - they have knowledge of

the behavior of the plant under failures as well as nominal
situations. A model-based program, consisting of a control
program and plant model, is a fault-aware executable specifi-
cation of the desired behavior of a robust embedded system.
The plant model is a representation of the hardware, including
the nominal and faulty states it may be in. The control program
directs the actions of the executive to progress the system
through a sequence of intended states. The executive uses
the plant model to generate a control sequence that achieves
these intended states. The verification task for a model-based
program therefore has two pieces. One may verify properties
of the plant model alone, or one may verify the control
program, given a correct plant model. Our work focuses on the
latter, while previous work has focused on the former [PS00].

There has also been research on the verification of the di-
agnostic executive [HLP

�

00] [LP03]. That research attempts
to formalize the behavior of the executive, and then prove
that the executive, thus formalized, has various properties. Our
research takes a different approach: as part of the verification
process, we invoke the actual executive components that will
be used at runtime. This has the advantage of avoiding any
mismatch between the formalization and the actual software
used, while the disadvantage, of course, is that we cannot use
logical reasoning to infer properties of the executive.

The control program, by its nature, has a high-level goal.
For example, this could involve carrying out a navigation
procedure or maintaining a sub-system in a steady-state.
We enhance the control program to include this definition
of success in the form of a goal specification. The results
returned by verification are counterexamples to this overall
specification.

Our final contribution is the ability to verify these specifica-
tions through execution. To handle all possible failure scenar-
ios, the reactive systems that we have described must consider
an exponentially large state space. To achieve tractability,
model-based executives consider a subset of the possible
situations and solutions, by employing anytime algorithms.
Due to this approximate inference, it is difficult to formalize
the behavior of such systems correctly. In addition, changes
to approximations made by the reactive system over time
would render any formalization used by a verifier obsolete.
We therefore generate our results by running the specification
on the actual software executive. Our tool verifies programs
written in the Reactive Model-based Programming Language
(RMPL) using the Titan executive. Titan includes both a con-
trol sequencer and deductive controller. The control sequencer
generates the sequence of intended states, while the deductive
controller attempts to achieve them. An RMPL model-based
program can have many different executions, which depend
on the observations it receives, the time for which it runs,
and the mode estimation algorithm used for diagnosis. Some
of these executions will achieve the program’s goal, and
others will not. For instance, along one execution path, a
camera may fail to take a picture, resulting in an unsuccessful

navigation procedure. The verification tool focuses on these
unsuccessful execution paths. It explores the set of most likely
executions over the specified number of program steps. It
interfaces directly with the Titan executive and can thus easily
accommodate updates to Titan.

We further motivate our verification approach with an exam-
ple.

III. EXAMPLE OF VERIFICATION ON A MODEL-BASED

PROGRAM

Consider the problem of controlling a spacecraft system. A
spacecraft has hundreds of different components that must
interact in complex ways. At the same time, a spacecraft oper-
ates autonomously in an unpredictable environment, making it
likely that there will be unexpected failures. These properties
make it a good candidate for model-based autonomy. Figure
1 shows a Mars lander spacecraft. Figure 2 shows the RMPL
control program [Ing03] specifying the desired behavior of
such a spacecraft during an entry scenario. The program
performs a series of actions in preparation for entering the
atmosphere of Mars, such as turning on the engine and letting
it heat to standby, changing the kind of navigation used, and
properly orienting the craft. The program operates on a model
of the spacecraft, which represents both nominal and failure
scenarios.

Fig. 1. The Mars Polar Lander. Courtesy NASA/JPL-Caltech.

1 EntrySequence()
�

2 Engine = Standby;
3 Nav = Inertial;
4 do

�
5 always (Att = Entry-Orient),
6 when (Att = Entry-Orient)
7 donext (Lander = Separated)
8 � watching (Entry = Initiated)
9 �

Fig. 2. The RMPL Control Program for the Mars Entry Scenario.

Since many failure scenarios are possible, a developer creating
a model-based program for such a system would find it
beneficial to be able to enumerate possible failure executions.
The RMPLVerifier returns the most likely executions of a
model-based program that do not lead to success. The tool
tracks a set of most likely plant state trajectories over time,
as shown in Figure 3. The figure shows a simplified trajectory
that could be returned as a counterexample by the verifier. In
this trajectory, the engine transitions from off to heating and
then to a failed state.

s(t) s(t+1)

S1
(t)

s(t+2)

S1
(t+1)

S2
(t+1)

S3
(t+1)

S4
(t+1)

S1
(t+2)

S2
(t+2)

S3
(t+2)

S4
(t+2)

s(t+3)

S1
(t+2)

S2
(t+2)

S3
(t+2)

S4
(t+2)

...

Engine = Off

Engine = FailedEngine = Heating

Fig. 3. The Set of Plant State Trajectories Tracked by the RMPLVerifier.

IV. THE RMPLVERIFIER

The RMPLVerifier verifies a model-based program against
a specification of success. It takes as input a model-based
program with a goal specification and produces as counterex-
amples the � most likely failure executions of the program.
The verifier generates these executions by searching the space
of possible trajectories using greedy forward-directed search.

The RMPLVerifier generates trajectories using Titan and a
simulator that provides observations consistent with the plant
state. A plant state trajectory includes only states of the plant
model and is tracked by the simulator. A plant state has a
likelihood, computed from the likelihood of the previous state
and the probability of transitioning to it from the previous
state. A program state includes the states of the control
program and plant estimate at a given point in the execution
of a model-based program. A program state trajectory, which
is generated by Titan, consists of a sequence of program
states and represents the execution of a model-based program
from the start state to a given time step for a given plant
trajectory. The verifier returns a list of plant state trajectories.
The likelihood of the plant state trajectories is used as the
search heuristic. The search completes once the requested k
number of solutions has been found for the given horizon. A
list of trajectories, sorted in order of likelihood from highest
to lowest, is returned as solutions to the verification query.

V. THE VERIFICATION ALGORITHM

We seek to answer the verification question “What are the
k most likely plant trajectories that do not achieve a given
goal within N time steps, given the control program, plant

model, and starting configuration of an RMPL model-based
program?”

Figure 4 gives an overview of the action of the RMPLVerifier.
It has two main components, the Titan executive and the
plant simulator. The Titan executive is the same software used
to control the system at runtime; it consists of the control
sequencer and deductive controller. It runs on the control
program and plant model. The plant simulator tracks the set
of � most likely trajectories at each time step, using the model
and goal specification. The simulator and Titan interact in a
loop. The simulator receives commands for the current time
step from the executive and returns observations consistent
with the next estimated state. At the end of a given time
horizon, the simulator outputs the set of most likely plant
trajectories at that time step that fail to achieve the program
goal. This list, sorted in order of likelihood, is returned as
counterexamples to the verification query.

Titan Executive

Control
Program

Plant
Model Observations Commands

RMPLVerifier

RMPL Model-based
Program

Plant SimulatorGoal
Specification

Most Likely Failure Trajectories

Fig. 4. A High-level View of the Algorithm.

A plant state trajectory includes only states of the plant model.
A plant state has a likelihood, computed from the likelihood
of the previous state and the probability of transitioning to
it from the previous state. A program state includes the
states of the control program and plant estimate at a given
point in the execution of a model-based program. A program
state trajectory consists of a sequence of program states and
represents the execution of a model-based program from the
start state to a given time step for a given plant trajectory. The
verifier returns a list of plant state trajectories.

VI. TOP-LEVEL PSEUDOCODE

We first describe the top-level pseudocode for the verifier,
shown in Fig 5.

We can think of the Simulator in abstract terms as tracking a
set of plant state trajectories selected from the Trellis diagram
of possible trajectories. This set of plant trajectories at first
contains only the initial plant state. Titan, on the other hand,

1 Verify (ControlProgram, Model, GoalSpec, InitialState,
2 Horizon, NumSolns) returns Trajectories
3
4 let Simulator = new Simulator(Model, GoalSpec,

InitialState, NumSolns)
5 let InitObservation = compute assignment to observables
6 entailed by Simulator’s initial state and Model
7 let Observations = � InitObservation �
8 let Commands = ���
9 for (let TimeStep = 0; TimeStep < Horizon; TimeStep++)
10 for (let i = 0; i < Observations.size(); i++)
11 let Titan = get Titan that corresponds to plant trajectory i
12 let Command = Titan.Step(ControlProgram,

Model, Observations[i])
13 insert Command into Commands
14 endfor
15 Observations = Simulator.Step (Commands)
16 endfor
17 return Trajectories from Simulator

Fig. 5. The Top-level Pseudocode of the Verification Algorithm.

can be thought of abstractly as generating a control program
trajectory. The task of the verifier is to select amongst choice
points in the trellis diagram, so that the simulator and Titan
most likely fail to reach the goal.

In the beginning we initialize an instance of the simulator
(Line 4). We next ask the simulator for the observation
entailed by the initial plant state (Line 5-6). We add this initial
observation to the list of observations to be passed to Titan
(Line 7).

We now begin the first iteration of the verifier (Lines 9-16).
We get an instance of Titan that corresponds to the simulator
plant trajectory (Line 11). Since we are just starting, this
will be a new Titan instance. We give our initial observation
from the simulator to Titan (Line 12), as shown in Figure
6(a). Mode Estimation takes the observation and calculates an
estimate of its initial state. The control sequencer generates
the next configuration goal, based on this current state and
the control program. Mode Reconfiguration issues a command
for the plant based on this configuration goal, as shown in
Figure 6(b). This is added to the list of commands (Line
13). At this point, Titan’s program trajectory is composed of
just one state, consisting of the states of the control program
and plant estimate, originating from the initial observation.
The simulator receives the new command from Titan (Line
15) and generates a new set of � observations from its plant
trajectories, as shown in Figure 6(c).

We begin the second iteration. For each new observation, Titan
is called for another step (Lines 10-14). The instance of Titan
that we use must correspond to the plant trajectory for the
observation (Line 11). In other words, the observation is output
from a simulator plant trajectory, which generated a program
trajectory using Titan in the previous iteration of the verifier.
During the step, Titan’s Mode Estimation learns of the new
command from MR, as well as the new observation received
from the simulator, and calculates the next estimated state

from the current state (Figure 6(d)). At this point, we have
used Titan to generate � program state trajectories, obtained
by extending the initial program trajectory with the different
observations. We get a list of � new commands and pass them
to the simulator (Line 15). The simulator ensures that each
command is given to its originating plant state trajectory. This
is the plant trajectory that generated the observation that in turn
generated the command. The plant trajectories are extended
once more, and the new observations are generated, as shown
in Figure 6(e).

In this manner, the cycle repeats until the time horizon has
been exceeded. The RMPLVerifier returns the set of most
likely plant trajectories from the Simulator at the end of the
last time step. Figure 7 illustrates the steady-state relationship
between Simulator and Titan trajectories. Titan’s MR issues a
command. The Simulator receives that command and issues
the new observation based on the next plant state. Titan’s ME
receives the observation as well as the command and computes
its next state estimate.

We look into the operation of the Simulator in detail in the
next section. For now, it is sufficient to know that the Simulator
extends its initial trajectory based on the command by the next
most likely states to a set of most likely trajectories. For each
next state, the Simulator outputs an observation entailed by it.
Therefore, if there are � next states, there are � corresponding
observations (Figure 6(c)).

VII. THE SIMULATOR

We now examine the Simulator in greater detail. The pseu-
docode given in Figure 8 shows a Simulator() constructor
by which we initialize the Simulator and a Step() function.
Step() is called on each iteration of the verifier with a list of
commands and returns a list of observations. The Simulator
maintains a set of the current most likely plant trajectories,
which it updates at each time step. Its first action is to
invoke our modified � Most Likely Trajectories algorithm
(Line 6), described later on. It provides the algorithm with the
current set of plant trajectories and commands, as well as the
model and goal specification of the model-based program, and
obtains the set of next most likely program failure trajectories.
For each next trajectory, it computes an assignment to the
observable variables of the model that is entailed by the last
state of the trajectory and the model (Line 17). It inserts this
observation into a list of observations (Line 19). Finally, it
updates the current trajectories (Line 21) and returns the list
of observations to the verifier (Line 22). Figure 9 graphically
illustrates one step of the Simulator. The Simulator receives
a list of commands 1 through � , which are passed to the �
current trajectories. Based on the new information, it generates
the � next trajectories and their corresponding observations.

In our algorithm, we assume that the plant model is determi-
nate, and therefore, a state uniquely determines an observation.
However, if the plant model is an indeterminate, partial spec-

ification, then multiple observations may be consistent with
a state, and the observations may have different likelihoods.
Therefore, branching on unassigned observable variables with
different probabilities could be a future extension to this
algorithm.

The Simulator uses a modified version of a � Best Trajec-
tories algorithm originally developed for the Mode Estima-
tion component of Titan. Figure 10 gives the pseudocode
incorporating our changes to the algorithm. Since we are
using Titan to individually propagate a set of trajectories
rather than just one, we receive a corresponding number of
commands. Observations are not part of the input, since our
objective, as a simulator, is to generate the observations from
the commands. Finally, we consider the goal specification of
the model-based program when determining which transitions
are tracked. Since we are interested only in counterexamples,
that is, trajectories that do not satisfy the goal specification, we
disallow transitions to states that fulfill the goal of the program.
The goal specification is a propositional state logic sentence;
for example, a specification could be (RoverTargetPosition =
Reached). We take the negation of this sentence and add it
to the logic constraints for the model. We determine enabled
transitions based on whether they satisfy the negation of this
goal constraint, in addition to the constraints asserted by the
modes and transitions of the model. Therefore the algorithm
only generates the most likely trajectories that fail to achieve
the program goals. The cost of a trajectory is its computed
probability and therefore, the probability of the execution it
represents. The algorithm performs a greedy forward-directed
search over the space of possible trajectories. At each iteration,
best-first search is used to select the next set of trajectories.

VIII. RESULTS AND FUTURE WORK

The RMPLVerifier has been implemented in C++ and inte-
grated with the current version of Titan and RMPL.

We measured the performance of the RMPLVerifier with
respect to time. The program was tested on an Intel(R)
Xeon(TM) 1.7 GHz processor with 500 MB of RAM running
the Debian Linux 2.4.23 operating system. It was run on the
Mars Entry model-based program with different combinations
of search parameters. The Mars Entry model is composed of
8 component models. It has 7 control variables, 15 observable
variables, 10 state variables, and 10 dependent variables, for
a total of 42 variables. It has 179 transitions.

For our first benchmark, we varied the number of time steps
the verifier examined while keeping the number of tracked
trajectories constant. Table I shows the time performance of
the program in this case. For each test, we measured the total
number of seconds that the process used directly in user mode
and the total number of seconds used by the system on its
behalf in kernel mode. We added these two numbers to obtain
the total time the process ran. We averaged the total time over
ten runs to compute the average time for the test case.

Titan

Simulator

Titan

Simulator
observation1

observationk

S1
(0)

...

S1
(0)

S1
(0)

S1
(0)

S1
(1)

Sk
(1)

Titan

Simulator

...

S1
(0)

S1
(0)

S1
(1)

Sk
(1)

S1
(1)

Sk
(1)

...

command1

command1

observation1

observationk

observationi

command1

commandk

(a)

(c)

(d)

Titan

Simulator

S1
(0)

S1
(0)

command1

(b) observationi

observationi

observationi

Titan

Simulator

...

S1
(0)

S1
(0)

S1
(1)

Sk
(1)

S1
(1)

Sk
(1)

...
command1

observation1

observationk

command1

commandk

(e)
observationi

...
S1

(1)

Sk
(1)

observation1

observationk

...

...

...

...

...

...

Fig. 6. The Beginning of the Verification Algorithm. (a) The Simulator
issues an observation based on the initial state. (b) Titan estimates the state
based on the observation and issues a command. (c) The Simulator issues
observations consistent with the next states. (d) Titan issues a new set of
commands based on the new observations. (e) The Simulator again issues
observations consistent with the next states.

Number of Time Steps Number of Trajectories Average Time (seconds)
1 5 0.396
2 5 2.898
3 5 5.96
4 5 10.066
5 5 15.758
6 5 22.462
7 5 29.511

TABLE I

PERFORMANCE OF RMPLVERIFIER ON THE MARS ENTRY MODEL-BASED

PROGRAM WITH RESPECT TO THE NUMBER OF TIME STEPS.

Number of Time Steps Number of Trajectories Average Time (seconds)
1 1 0.349
1 2 0.36
1 3 0.363
1 4 0.388
1 5 0.412
1 6 0.426
1 7 0.441

TABLE II

PERFORMANCE OF RMPLVERIFIER ON THE MARS ENTRY MODEL-BASED

PROGRAM WITH RESPECT TO THE NUMBER OF TRAJECTORIES.

current
state

next
state

next
state

current
state

commandTitan

Simulator

observation

Fig. 7. Relationship between a Titan trajectory and a Simulator trajectory.

1 Simulator (Model, GoalSpec, InitialState, NumSolns) �
2
3 // Constructor
4 Simulator. Model = Model
5 Simulator. GoalSpec = GoalSpec
6 Simulator. NumSolns = NumSolns
7 Simulator. CurrentTrajectories = initial trajectory from InitialState
8 �
9
10 Step (Commands) �
11 returns Observations
12
13 let NextTrajectories = FindModifiedKMostLikelyTrajectories
14 (Simulator. Model, Simulator. GoalSpec, Simulator. CurrentTra-
jectories,
15 Commands, Simulator. NumSolns)
16 foreach NextT in NextTrajectories
17 let Observation = compute assignment to observables en-
tailed by NextT’s
18 current state and Model
19 insert Observation into Observations
20 endfor
21 Simulator. CurrentTrajectories = NextTrajectories
22 return Observations
23 �

Fig. 8. The Simulator Pseudocode.

For our second benchmark, we varied the number of trajecto-
ries to find while keeping the number of time steps constant.
Table II shows the time performance of the program. We
computed the average time in the same manner.

The data we collected agreed with our intuition on the
performance of the program. As we increase the number of
trajectories, the time for the program to complete increases in
a roughly linear fashion. This corresponds to the behavior we
would expect for Mode Estimation, which is the computational
core of the simulator. However, as we increase the number of
time steps, the time for the program to complete increases
exponentially. This is an artifact of the implementation. We
can understand why this happens by looking at the process by
which the verifier computes the next set of Titan trajectories
from the current one. Let us define the time needed to extend
each of the current set of Titan trajectories by one Titan step
as a constant � . Therefore, the time taken to complete one
time step is � added to the time to recreate the current Titan
trajectories. This can be described by the following recurrence:

current next

… …

S1
(t)

S2
(t)

Sk
(t)

S1
(t+1)

S2
(t+1)

Sk
(t+1)

Cmd1
(t)

Cmd2
(t)

Cmdk
(t)

Obs1
(t)

Obs2
(t)

Obsk
(t)

Fig. 9. One step of the Simulator.

1 ModifiedFindKMostLikelyTrajectories (Model, GoalSpec,
2 CurrentTrajectories, Commands, NumSolns)
3 returns NextTrajectories
4
5 let NextTrajectories = � �
6 let PriorityQueue = � �
7 foreach CurrentT in CurrentTrajectories
8 let Command = Commands[CurrentT]
9 compute the most likely transition from CurrentT’s

current state, enabled by Command and Model,
10 that doesn’t satisfy GoalSpec
11 let NextT = CurrentT + target state of enabled transition
12 insert NextT into PriorityQueue
13 endfor
14 while PriorityQueue is non-empty
15 let T = pop most likely trajectory from PriorityQueue
16 insert T into NextTrajectories
17 if (size of NextTrajectories == NumSolns)
18 return NextTrajectories
19 endif
20 let OrigCurrentT = T - last state of trajectory T
21 let Command = Commands[OrigCurrentT]
22 compute the next most likely transition from OrigCurrentT’s cur-
rent state,
23 enabled by Command and Model, that doesn’t satisfy GoalSpec
24 let NextT = OrigCurrentT + target state of enabled transition
25 insert NextT into PriorityQueue
26 endwhile
27 return NextTrajectories

Fig. 10. The Modified � Most Likely Trajectories Algorithm.

�������	��

�
� �������	����� � ������������� ��������� ����������

����� ��� �
Therefore, the time to execute a program that examines ! steps
is:

�#"%$ � �

�& '
(� �������

'

���*)+� �-,/.10

This performance bottleneck is strictly an implementation
issue, which can be addressed as a software engineering task.

In addition to addressing performance issues, there are two
main ways that the presentation of results to the user could be

improved. The first is the addition of a graphical user interface
in addition to the command-line interface that is currently
available. Desired features of this interface could include the
ability to visualize, step through, and play back trajectories.
Another is the abstraction of the trajectories returned. It
is possible that some trajectories returned will have many
states in common. Trajectories could be grouped together
by similarity and common points of failure to increase the
relevance of the results to the user.

REFERENCES

[BCM 2 92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and
J. Hwang. Symbolic Model Checking: 35476%8 States and Beyond.
Information and Computation, 98(2):142–170, June 1992.

[BG92] Gerard Berry and Georges Gonthier. The Esterel Synchronous
Programming Language: Design, Semantics, Implementation.
Science of Computer Programming, 19(2):87–152, Jan 1992.

[HLP 2 00] K. Havelund, M. Lowry, S. Park, C. Pecheur, J. Penix, W. Visser,
and J. White. Formal Analysis of the Remote Agent Before and
After Flight. In Proceedings of the 5th NASA Langley Formal
Methods Workshop, Williamsburg, VA, June 2000.

[Ing03] Michel D. Ingham. Timed Model-based Programming: Exe-
cutable Specifications for Robust Mission-Critical Sequences.
PhD thesis, Massachusetts Institute of Technology, May 2003.

[LP03] A. E. Lindsey and Charles Pecheur. Simulation-Based Verifica-
tion of Livingstone Applications. In Proceedings of Workshop
on Model-Checking for Dependable Software-Intensive Systems
(DSN 2003), San Francisco, CA, June 2003.

[PS00] C. Pecheur and R. Simmons. From Livingstone to SMV: Formal
Verification of Autonomous Spacecrafts. In Proceedings of the
First Goddard Workshop on Formal Approaches to Agent-Based
Systems (FAABS), Greenbelt, MD, April 2000.

[WICE03] Brian C. Williams, Michel D. Ingham, Seung H. Chung, and
Paul H. Elliott. Model-based Programming of Intelligent Embed-
ded Systems and Robotic Space Explorers. IEEE, 9(1):212–237,
Jan 2003.

